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Almost Poisson integration of Rigid Body Systems*
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In this paper we discuss the numerical integration of Lie-Poisson
systems using the mid-point rule. Since such systems result from the
reduction of hamiltonian systems with symmetry by Lie group actions,
we also present examples of reconstruction rules for the full dynamics,
A primary motivation is to preserve in the integration process, various
conserved quantities of the original dynamics. A main result of this
paper is an O(h*) error estimate for the Lie-Poisson structure, where A
is the integration siep-size, We note that Lie—Poisson systems appear
naturally in many areas of physical science and engineering, including
theoretical mechanics of fluids and plasmas, satellite dynamics, and
polarization dynamics. In the present paper we consider a series of
progressively complicated examples related to rigid body systems. We
also consider a dissipative example associated to a Lie-Poisson system.
The behavior of the mid-point rule and an associated reconstruction
rule is numerically explored.  © 1993 Academic Press, Inc.

I. INTRODUCTION

Natural dynamical systems often display a variety of
analytic and geometric structures in their mathematical
descriptions. Associated to such structures, there are
various conserved quantities or invariants of analytic as well
as geometric character. For instance, in hamiltonian
mechanics of particles in a central force field, one has
conservation of energy and total angular momentum. The
phase space volume is also conserved. The latter is an
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by the National Science Foundations Engineering Research Centers
Program, NSFID CDR 8803012; by NSF Research Initiation Grant NSF
BCS 8907722, and also by the Army Research Office through the
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example of a geometric conserved quantity. In the case of
dissipative systems the volume decays. In the study of
such systems via computer simulation, it is very desirable to
use computational schemes that admit the same set of
invariants {or decay rates). More precisely, one would like
to preserve underlying geometric structures and symmetries
even in the discrete-time dynamics (computational scheme),
in the interest of long-term predictions. If, as is customary,
one were to use off-the-shelf schemes (¢.g., fourth or higher
order explicit Runge-Kutta [20], backward Euler,
diagonally implicit Runge-Kutta [2]) to integrate the
dynamics in such problems, then the computed trajectories
show systematic deviations (decay or growth) in the quan-
tities that are physically conserved. Thus, such numerical
simulations are an unreliable guide to the long-term
dynamic behavior. For related comparisons, see Channel
and Scovel [5].

For some time there has been steady interest in the design
of algorithms that have the facility to closely mimic
hamiltonian dynamics. In the work of the Beijing school
(9, 107, for example, we find a systematic exploration of
symplectic schemes (via generating functions) for classical
hamiitonian systems on flat spaces. The mid-point rule
plays a prominent role in that work. In the present paper,
we are concerned with systems that evolve on cotangent
bundies of Lie groups, a basic example being the free rigid
body with the rotation group as configuration space. If the
hamiltonian is fully reducible by the group, as is the case in
the rigid body example, then the dynamics drops to the flat
space of linear functionals on the Lie algebra of the Lie
group, and hence the mid-point rule is well defined globally
in the reduced variables. The hamiltonian structure of the
reduced equations is noncanonical, and is referred to as a
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Lie-Poisson structure. It is a principal goal of this paper
to explore the applications (via a series of progressively
complicated examples) of the mid-point rule and related
reconstruction rules to such Lie-Poisson equations, In
general, the mid-point rule is not exactly Poisson structure
preserving (and hence the terminology of almost Poisson
integration). However, by a small miracle involving the
Jacobi identity, the mid-point rule is second-order accurate
in the Poisson structure, and to this end we give an error
formuia,

The structure of the paper is as follows. In Section 2
we present the basic model of {noncanonical) Poisson
dynamics and summarize some of its properties. We also
specialize it to the classical canonical setting. In Section 3
we discuss the mid-point rule and present an error formula
for the Poisson bracket. The mid-point rule is applied to a
variety of examples in Section 4; these include rigid body
dynamics, heavy top, and dual spin setellite with internally
damped rotors. A key result is the derivation of a
reconstruction formula for elements in SO(3) (the rotation
group), which conserves spatial angular momentum.
Section 5 describes the numerical implementation of
the proposed algorithms. Finally, results of numerical
experiments are presented in Section 6.

A Lie-Poisson Hamilton—Jacobi theory has been for-
mulated by Marsden and Ge-Zhong [ 12]. This theory leads
to algorithms that preserve the Lie—Poisson structure
exactly, but do not typically conserve the Hamiltonian.
Recently, Simo and Wong [22] have used a Newmark-
based algorithm to study rigid body dynamics. When the
parameters of their algorithms are set so that energy and
momentum will be conserved, their algorithm reduces to the
mid-point rule, together with an exponential map. We note,
however, that the work of Simo and Wong does not con-
sider errors, from the viewpoint of conserving the Poisson
structure, and has not been extended to applications with a
general Lie-Poisson setting. For other earlier work on the
mid-point rule, we refer the reader to Elliott [7, 8.

2. THE MODEL

In the present paper we are concerned with hamiltonian
models of the form,
i=A(z) VH{z). (1)
Here A(z), the Poisson tensor, is an n <7 skew-symmetric
matrix for each z and H is the hamiltonian. In addition, the
tensor /(z) satisfies a set of differential equations (Jacobi
identity):

522 iy 4 A7) () 4+ P4 oy o,

2
T az, Jz; dz, 2)
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With condition (2), the operation

{£g}=VfT4a(z)Vg (3)
is a well-defined Poisson bracket on the space of smooth
functions on R”. It is remarkabile that the equations of many
physical and engineering problems are based on models of
the form of (1) or perturbations thereof. We note, for exam-
ple, the dynamics of dual spin satellites [15], accelerator
dynamics [67], motion of a heavy top [3], Euler’s ¢lastica
[18], and dynamics of rods, plates, and shells [21]. Also
see Simo, Marsden, and Krishnaprasad [21] for infinite-
dimensional examples and Marsden et af. [17] for a general
discussion. :
The dynamics (1) can be re-expressed in terms of the
Poisson bracket (3} as
2,={z; H}. (4)
When A(z) is linear in z, the bracket structure is said to
be of Lie-Poisson type. Several of the earlier mentioned
examples are of this variety. Let

A)= 3 Tha, (s)
k=1

subject to the constraint I'% = — I'¥. By substituting (5) into
the Jacobi identity (2), it can be shown that

n
Y O+ I+, rp=0, 1<ijk<n (6)
I=1

For this particular case, it is welt known that the underlying
vector space R” can be given the structure of a Lie algebra
[24] with the structure constants I f; in a suitable basis.
Now let @: R* — R” be a diffeomorphism. @ is said to be 4
Poisson automorphism if it preserves the Poisson structure,
i.e., for smooth functions f, g,

{(fglod={f-D,g-B}
or, alternatively, its Fréchet derivative satisfies

(DP(z)) A(2)(DD(2))T = A(P(2)). (7}

Here the superscript T denotes matrix transpose. We recall
the well-known result (see Weinstein [24]),

ProOPOSITION 1. The flow @' of the system (1) satisfies:

(a) It is a Poisson automorphism V1.
(b) H(P'(z)) = H(2).

(c) If C:R" - R is a function such that A(z)VC(z) =0,
then C yields a kinematic conservation law of (1).
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Remark 1. Functions C as in Proposition 1 are called
Casimir functions. For canonical hamiltonian systems,

A(z) =[_§]) 3)]

Here 1 denotes the identity transformation on R™, where
m = n/2. The corresponding canonical Poisson bracket is

refdg &f og
(fei=% [a—%a“a%}

(8)
where the coordinates g, and momenta p; together define
Z={qy, e Gus P1» o Pm)’  With n=2m. For canonical
hamiltonian systems, Casimir functions are constants.
However, in the Lie-Poisson setting, nontrivial Casimir
functions are common, as will be demonstrated by our
examples in Section 4.

3. THE MID-POINT RULE

A basic concern of this paper is to investigate numerical
algorithms that closely mimic Proposition 1. In particular,
we are interested in the mid-point rule, a scheme well known
to be symplectic in the canonical case [9]. Consider the
implicit recursion,

ShHL_ gk 2Ky gk promp
—_— =4 . 9
[ p ] ( 2 )VH( 2 ) ®

This is a discrete analog of (1) for time-step 4. It is a second-
order accurate integrator, and for smali enough A4, defines a
diffeomorphism &*, via

= ph (%), (10)
We compute the Fréchet derivative D@%,(z) as follows: By
definition, y = ®%(z) is the unique solution to the implicit
equation

Fz,y) & y—z—hA (z—;y)VH(z;y)=O. (11)

Differentiating F(z, @%,(z))= 0 gives

D, F+ D,F-D®" =0, (12)
where D, F, i=1, 2, denote the partial Fréchet derivatives.
For h small enough, D, F has an inverse, and (12) may be
rearranged to give

D®%y(z)= —(D,F) ' (D, F). (13)
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For the special case A(z) = 4 a constant, it is easy to see that

h
D1F= —1] —_—

g, (2E2502)

AHZZ( 2

and

djh
D,F=1 —%AHZZ (zizi(zl)

Letting Q(z) = H..((z + ®}(z))/2) denote the symmetric
Hessian matrix, we obtain

Dd5’,',{z)=|:1] ——%AQ(Z)]‘ [:‘il +§AQ(2)]. (14)

ProrosITION 2. (Wang [237]). If A{z)=A a constant,
then the mid-point rule is a Poisson automorphism.

Proof. We need to show that
DD (z) A(DD"(z)) = A.

Based on the above calculations, this reduces to showing

that
[(11 —g AQ(z))1 (11 + g AQ(z)):l

x A [(11 —g AQ(z))_l (1 +g AQ(z))]T — A,

which is equivalent to showing that
T
[‘H + ’—1 AQ(Z):l A [11 + t AQ(z)]
2 2
h h T
= [1 -5 AQ(z)] A[l —5 AQ(z)] .

This follows from the fact that A = — AT and Q(z) = Q(z)".
The proof is now complete.

Remark 2. Tt follows from the above proposition that if
A{(z)y=A=T[_9}] (ie, we are in the canonical case), then
the mid-point rule preserves the classical Poisson bracket
(8). In such cases, we recover the well-known result that the
mid-point rule is a symplectic integrator (Feng [10]). This
result also follows from the observation that in the canoni-
cal case, formula (14) becomes a Cayley transform of an
infinitesimally symplectic matrix AQ(z) and hence D" (z)
is symplectic.

When A(z) is not a constant, in general, the mid-point
rule is not a Poisson automorphism. The following theorem
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shows that when A{z) is linear in z (i.e, we are in the
Lic-Poisson setting) the mid-point rule is an afmost Poisson
integrator in the sense that it preserves the Lie-Poisson
structure up to second order. To this end, an error formula
is given.

THEOREM 1. For Lie—Poisson systems the mid-point rule
is almost a Poisson automorphism. We have the error formula

DP},(z) A(2)(DP(2))T — A(P}(2))

3
- - x4 (P ke o, q1s)
where
h
K(z)=4 (§+—q2§”—(22) Q+2(w),
_prg {FH2uE)
0=D H( i )
w=VH(i%2_))
<)

Here () is the Hessian of H evaluated at the mid-point, and Q
is defined by requiring that Q(v) y = A(y)v, where v, y € R

Proof. Recall that the partial Fréchet derivatives for
v e R" are

Flz+tv, y)— Fiz, y)
t

D Flz, y)v A lim
r—=0

Flz,y+t)— F(z,
DyF(z, y)v & lim (z,y+w)— Mz y)

r~0 !

It can be verified that
D, F= —[ﬂ +%’A (z+y)D1H(Z; y)

32 (v ()]

(16)
and
D,F= [1} _g A (il;—y-) DH (Z—gl)
_gQ(VH(Z;y))]. (17)

In the following derivation, y in (16) and (17} will be used
to denote ®%,(z). The error in the Poisson structure 4 due
to discrete time stepping by @4 is given by

e= DO [2) AZDD ()T — A(D'z)).  (18)
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Substituting (16} and (17) into (13) gives

e=(D,F)7" (&, )(D,F)T 7, (19)

where
&y =(D,F) Az D, F)Y' — (D, Fy A(y} D, F)". (20)

Since (D, F)~' =1+ O{h), we are mainly interested in the
behavior of ¢, as a function of A For notational con-
venience, we write the mid-point (z + ®%(z))/2 as x and
define & = y — z = ®%(z) — z. The terms of formula (20) are
now multiplied out. By invoking (16) and (17) and noting
the linearlity of A and € in their respective arguments, we
obtain

gy =[—A(S)+ hQ(w) A(x) + hA(x) 2(w)"]
+ [AA(x) QA(x)+ hA{x) QA(x)T]

2
+| =% 40 046) Qs

2
~ 7 Q) AG) Q)" |
hz
- |5 400 045) 20T
h2
+;9(w)A(a)g(w)T]. 21)
The second square bracket in ¢, vanishes because A = — AT,
Recall from (9) that
d=hA(x}yw. (22)

After (22) is substituted into (21), we note that the first
square bracket in (21} is linear in &, and when multiplied by
v it takes the form

h[ — A(A(x)w) + Q(w) A(x)+ A(x) Q(w) Jv.  (23)

We wish to show that expression (23) also vanishes. This is
equivalent to showing that

Yoe R".
(24)

[ —A{A(XIw) + Q(w) A(x) + A{x) Q{w)T v =0,

Recalling that the definition for £ is given by Q(v)y=
A(y)v, the left-hand side of (24) can be re-written as
— () AW+ (W) 2()x + A(x) 2(w) v, (25)

The next step is to expand  and A via the structure
constants I” f; One can then show that precisely because
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of the Jacobi identity (6}, expression (25} vanishes for
all v, w, xe R". This is the small miracle alluded to in the
Introduction! Collecting together the terms in the third and
fourth square brackets in formula (21) for &, we obtain

h3
g1= — 7 [A(x)}Q +Q(w)] AlA(x)w)

x [A(x)Q +Q(w)]"

R 7+ ®4(z) T
= —I K(Z)A I:A (—-5—"‘) w:| K(Z) .

It follows that
e=(D,F) ' (g, (D, F)T!
=(1+0H) " (& )1+ 00N

=_§KuM(AGi%E§}ﬂK&f+WWl

This completes the proof.

Conserved Quantities of Poisson System (1)

It is well known that the mid-point rule is a second-order
algorithm. Accordingly, a conserved quantity is expected to
be approximated accurately up to second order. If F{z)is a
first integral of (1), then we have

VF(z)" A(z) VH(z)=0, Yze R (26a)

Assuming F(z} is also three times continuously differen-
tiable, then by Taylor’s theorem, we can expand £ around
z* as
F(z¥ 1) = F(z%) + VF(25)T (251 = %)
+ _é_DZF(zk) . (Zk+l __zk) . (zk+ 1 _zk)
+ éD3F(Zk) . (zk+1 _zk) _{Zk+ 1 —Zk)

(P L O =K. (26b)

It can be checked that when the mid-point rule (9) is
plugged into {26b),

F(z V)= F(2*) = 5 D*F(¥) - u+ O(RY), (26c)

where

zk+l+zk zk+1+zk
= A v .
( 2 ) H( 2 )

Equation (26c¢) is an error formula for conserved quantities
of (1), which contains only third or higher order terms. It
follows that the mid-point rule (9) preserves exactly any
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conserved quantity having only linear and quadratic terms,
including Casimir functions and the Hamiltonian for (1).
We have the following proposition, which will be referred to
later,

ProrosITION 3. The discrete analog (9) conserves all
Casimir functions and the Hamiltonian H of (1) if they
contain only linear and quadratic terms.

In the next section, we consider a set of examples related
to rigid body mechanics that captures the essence of the
results of this section,

4. EXAMPLES FROM RIGID BODY MECHANICS

The noncanonical hamiltonian model of this paper—the
Lie-Poisson case in particular—arises naturally in a variety
of problems in rigid body mechanics. In this section, we
discuss: (a) the simple rigid body, (b) the heavy top, and
(¢) the dual spin satellite with internally damped rotors.

4.1. Simple Rigid Body Spinning Freely in Space

Recali that the equations of motion for a simple rigid
body in three dimensions take the form:

A= A8,
I2=IQx Q.

where A e.50(3) (27)

(28)

Here, 4 € SO(3), the group of 3 x 3 rotation matrices, is the
matrix of direction cosines for a body frame attached to the
rigid body as viewed in an inertial frame; see Fig. 1. The

A%2

b
e

ez

b
es

F1G. 1. Configuration of inertial and body frames.
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vector Q is the body angular velocity of the rigid body
and £ represents a skew-symmetric matrix

0 L—Q:; Qz
Q= Q3 0 —"Ql
—QZ Ql O

The symbol x denotes the cross-product in R*. Note that
for an arbitrary vector p, @y = 2 x y. The matrix 7 denotes
the moment of inertia tensor of the rigid body in the body
frame. If m = IQ2 denotes the body angular momentum, then
we can re-write (27) and (28} as

———

A=AI"'m (29)

=il ~'m. (30)

Several observations arte in order:

(a) Equation (30) is the reduction of the full dynamics
{justified by the SO(3)-invariance of the kinetic energy) [1].
In the sense of Section 2, (30) is also Lie-Poisson, with
Poisson tensor A(m) =1, and hamiltonian H(m)=im-I"'m.
Hereafter - denotes the dot product.

(b) C(m)=14]|m|? is a Casimir function associated to
(30). It is a quadratic conserved quantity.

Our idea is to integrate (30) numerically via the mid-point
rule (thereby conserving H and C, see Proposition 3), and
then devise a reconstruction rule for updating the attitude
matrix A in such a way that spatial angular momentum
7= Am is also conserved.

4.1.1. Discrete Update in Body Momentum

Let m, and m, , ; be the body momentum at timesteps 1,
and h,,,, respectively, and A=h, ,—h,. The discrete
update in body momentum corresponds to the mid-point
rule applied to (30), ie.,

mk+1_mk=[mk+mk+l]x1_1 l:mk+mk+l] (31)

h 2 2

Given m,, Egs. (31) are solved for m, . 1t follows from
Proposition 3 that this update scheme conserves both H(m)
and C(m).

4.1.2. Discrete Update in Spatial Attitude (Reconstruction
Rule)

LemMMa. Once Egs, (31) are solved, our reconstruction
rule for the update in spatial attitude is given by the explicit
set of equations:

Ay = A1 =B, 17" [145,] (32a)
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where

h | P +rmy
pum [ 2] o ]
Proof. The explicit recursion (32)—the Cayley Trans-

form for SO{3)—is arrived at by requiring conservation of
spatial angular momentum n = Am,

(32b)

Ty =T = Ay p 1My = Ay (33a)
This suggests that a suitable form for the update is
Aeor= A=A [1-B17 [1+5],  (33b)

where I/J; is skew-symmetric and needs to be determined so
that (33b) closely approximates the matrix exponential
implies by A= AQ. Substituting {33b) into (33a) and
rearranging terms gives

P

e+ mye 1 be=[my,— ] (33c)

N
Note that if [m, +m, . ,] b, = [m,,, —m,;] has a solution,
then, by the Fredholm alternative theorem,

AN
(M —my) L kernel[me, +m]"
P

=kemel[m,  ; +m.]

= {D{[mk+l +mk} | e R}.
This implies that [mg+m,, ]-[me,,—m,]=0, and
thus conservation of Casimir is a necessary condition for

conservation of spatial angular momentum. The general
solution to {33c) is given by

be=Ailmp o —m I x [me  +m ]+ a[my +me ]

(34)
How do we choose A, and «,? First, note that
[rtg ) = T % mie 1 by (352)
=Lm+me  Jxbye
=[me+my )% A(Dme —my]
*Emy o Emed)
+ mp+me Ixaelme, +m ] (35b)
=[me+me I (A m —my ]
x [y sy +m]) (35¢)
=2 Iy my 12 Oy —my . (35d)
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This implies

1
=—, (36)
mpm )
To get o, # 0, the discrete update for body momentum (31)
is substituted into (34). Rearranging terms and selecting

txkz[é].[mk+mk+l]'1_][mkz+mk+1] (37a)
4 me +my ol
gives
n m, +m
b.=|=11"1! k Kyl |
k [2] [—'——2 :I (37b)

Remark 3. Note that the matrix product

[1—5 17" [t +5,]

7
—exp [hF‘ (’"—"-ﬁ"ﬁlﬂ +O(FY).  (38a)

In fact, if 7= 'm in (29) is a constant vector across the
timestep, then the incremental rule for the attitude matrix
becomes
P

Ay 1= A, explhl ~'m). (38b)
Thus, the update rule (33bj can be intuitively thought of as
the composition of two steps. First, the angular momentum
in (29) is approximated by an intermediate value. Second,
the exponential in (38b) is approximated in terms.of b, by
the formula (38a).

4.2. Heavy Top

Consider the motion of a rigid body fixed at a stationary
point subject to the action of a uniform gravitational field,
as shown in Fig. 2. If the body frame is fixed at a point O,
then we define the unit vector from O to the center of mass
in the body frame as y. The spatial inertial frame is also at
O with the vector k being one of its axes. Note that the body
1s acted on by a gravitational force — Mgk, where M is the
mass of the rigid body, and g is the constant of acceleration
due to gravity. The kinematics of the body frame relative to
the inertial frame are governed by

A=AQ, where AeSO(3) (39)
Moreover, if v = AT - k, then the equations of motion for the
heavy top can be expressed as

t=mxI"'m+ Mgloxy (40a)

(40b)

b=vxI"'m,

S81/167/1-8
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A -Mgk
Kk

P

FIG. 2. Diagram for heavy top.

where m = IQ is body momentum, / is the distance between
O and the body center of mass, and [ is the moment of iner-
tia of the heavy top relative to the body frame. The heavy
top conserves total energy and has two casimirs, C,(m, v) =
3 lvll* and C,(m, v}=m - v; for details, sce Marsden, Ratiu,
and Weinstein [16]. The discrete approximation of
equations (40), using the mid-point rule, is given by

’"k+a_mk=[mk+mk+1]x1_1mk+mk+1

h 2 2
+Mgl%ﬂxx (41a)
Ve~ | VetVpy Pt my
P —[ 5 ]xl B (41b)

It is important to note that Eqs. (41) conserve both Casimir
functions and the Hamiltonian H(m, v)=1im-I-'m+
Mgiv-x. This is to be expected from Proposition 3. The
discrete update for the attitude matrix A of the heavy top is
given by Eqgs. (32).

4.3. Dual Spin Satellite with Damped Rotors

Dual spin satellites consist of a rigid body platform and
several internal rotors, as shown in Fig. 3. When the
platform is fully operational, the rotors are set to spin at a
constant angular velocity relative to the platform. Damping
rotors act as dissipators of energy. Indeed, even in the
presence of mild disturbances, the transfer of momentum
from the platform to the damping rotors will result in a
mechanism for attitude aquisition of the platform. The
spacecraft angular velocity will align itself with the rotor
axis; see [15].

The equations of motion for a dual spin satellite with
damping are composed of two parts. As with the two
previous examples, the kinematics are given by

A=A0  where AeSO0(3). (42)



112

FIG. 3. Schematic of dual spin satellite with damping.

Let the diagonal matrix « = diag(x,, o, ®;), where a,> 0,
and let 7,=diag(/}, 73, 1}) be a diagonal matrix of
moments of inertia of the damping rotors with respect to
their spin axes. Note that /%, > 0 for i =1, 2, 3. If / is the fixed
internal angular momentum of the rotors, d is 4 momentum
vector associated to damping rotors, and m is as previously
defined, then the evolution of body angular momentum is
governed by the equations

m=(m+I+d)xI 'm—-ym+dd (43a)

d=ym—dd, (43b)
where y=af ' and d=al "', respectively. Although the
system is not a hamiltonian system in the form of (1), we
still have the following properties:

(a) This system has one conserved quantity C(m, d)=
e+ i+ di>

{b} The Lyapunov function for dual spin with damping
is

Vimdy=im-1"'m+4id . 17'd (44a)
1t is decrescent with
F= —(I7d—17"m) a(I'd— T 'm),  (44b)

along trajectories of (43). For details, see [15].
(c) The spatial angular momentum n=A[m+7/+d]is
also a conserved quantity.

The update in body momentum is given by the mid-peint
rule

AUSTIN, KRISHNAPRASAD, AND WANG

mk+!_mk__|:mk+mk+l

p +l+dk+dk+1]

2 2

]! [mk+mk+1:|
2

N RS do+d,,,
V[ 2 ]*5[ 2

dk+l—dk=}}[mk+mk+1]_é[dk+dk+l]

(45a)

h 2 2 (43b)
The discrete update for spatial attitude is again given by
Eqgs. (32). Following the steps in Section 4.1 it is easy to
verify that the attitude update is momentum conserving.
Indecd, techniques for reorienting the attitude of a satellite
depend on a mechanism for transferring the balance of
internal rotor and platform momenta, without affecting
spatial angular momentum.

5. NUMERICAL INTEGRATION SCHEMES

The solution procedure for each of the applications
described in Sections (4.1) through to (4.3) is: (a) solve the
implicit equations for the body momentum at timestep
f ;15 (b) solve the explicit equations for the update in
spatial attitude.

Update in body momentum. Equations (31), (41), and (45)
are systems of nonlinear ordinary algebraic equations (in
vector form) that must be solved at each timestep for m ;.
Each equation is written in component form—Ilet the ith
component be given by m, ., ,;—and is rearranged so that
solving the problem is equivalent to finding the roots of a
system of equations, ie., g,(m,, m;, )=0. This gives six
equations for dual spin with damping and heavy top
applications, and three equations for rigid body. A damped
Newton—Raphson procedure is used to solve the compo-
nent equations at each timestep. If m{ , | is the pth iterate of
body momentum at timestep k + 1, then the equations to
be solved at each iterate are obtaining by expanding
gi(my, mf |}, g2{my, mf{ ), and gs(m,, m{ ) in a Taylor
series about m{ , |, truncating all second-order and higher
terms, and solving the set of equations

- 0g, og, dgr T
amfkﬂ,l] amEk+l,2] amfk+1,3]
g, 8> 0g>
amfkﬂ,l] 5mfk+1,2] oM,
g3 f 0gs
L Omie amfk+1.2] oMy, 1374

gilme,mg, )
gZ(mka m£+ l)

gilmy, mg )

(46)
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for the incremental update m{}!, ., =mf, | .+ dmf, o,
where i=1, 2, 3. Equations (46) may be stated more con-
cisely J - h= — g Iterations continue at each timestep until:
{a) a preset maximum number of iterations is reached, or
{b) all changes in body momentum components from (46)
are less than a preset error vaiue times the magnitude of
momentum component at the beginning of the iterations.
Divergence of the iterates is avoided by ensuring that
l glomy, mE+ 1), is less than |g(m,, m{, )il,. When this
test fails, h is divided by powers of two until the norm of the
new [ p+ 1]th iterate is less than || g(m,. mf, )],.

Update in attitude. Because it is undesirable to compute
matrix inverses, solutions to (32a) are obtained by first
solving [1—5,1[x,1=[1+5,1 for the (3x3) matrix
{x. ], followed by the explicit update A, ., =4, - [x:]

6. NUMERICAL EXPERIMENTS

Results of numerical experiments are presented for two
applications: (a} motion of a rigid body spinning freely in
space, and (b) dynamics of a duval spin satellite platform
containing rapidly spinning internally damped rotors. In
each case we are interested in verifying that simulations of
the discrete dynamics match the theoretical predictions of
Section 4.

6.1. ExampLe 1 (rigid body motion). Consider the
motion of a rigid body having principal moments of inertia
I=diag(1, 2, 3). Initially (at time =0} the rigid body is
spinning freely about its intermediate (unstable) axis with
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angular velocity w=[1, 10, 1]; 400 timesteps at Ar=0.05s
are computed. At each timestep, iterations to solve the
equations of motion for body momentum m, , ; continue
until the magnitude of the incremental updates in angular
momentum components, given by Eq. (46), are all less than
155 of the component magnitudes for load vector g at the
beginning of the iterations.

Energy and Casimir conservation. Figure 4 shows the
time variation in energy H(my , )=1im,,-T 'm;,, and
Casimir C(m,,,)=1lm,,,|* for the rigid body. Both
quantities are conserved to machine precision.

Spatial attitude. Figures 5 and 6 show the time variation
in attitude matrix component A(1,1) for 400 steps of
simulation at At=0.05s and 4000 steps of simulation at
At =0.005s, respectively, We recall that the role of the
attitude matrix A is to describe the rotational orientation of
the body frame relative to an inertial frame. As such, the
time variation in all components of A is bounded by the
interval [—1, 1]. Figures 5 and 6 match this observation.
Our initial numerical experiments were with timestep
At =0.05. Although the Casimir and energy were conserved
to machine precision, we suspected the validity of the sharp
points in the plot of A{1, 1)1in Fig. 5. To ensure that this was
not an error in coding (it happens!)} the simulations were
repeated for the same time interval using Ar=0.005s. The
results are plotted in Fig. 6. It is easy to see that time varia-
tions in peak valves of attitude component A(1, 1) of Fig. 6
are much smoother than Fig. 5. However, the dramatic con-
traction in the period of the attitude components by merely
decreasing the step length was not anticipated a priori. This
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FIG. 4. Energy and Casimir for rigid body.



114

- I H T e e e |
~ Rigid Body Molion

A(11)

I_tolal = [123] At = 0.05 {seconds)
I w_start = [1,10,1]

AUSTIN, KRISHNAPRASAD, AND WANG

11 L

NSTEPS = 400
ERROR_NORM-= 001 -

_2IIlIIIIIllIliJJ‘{\l[\!lll!llLllllLLl_l_l_l_l

0 2 4 @ 8

10 12 14 16 18 20

Time {secands}

FIG. 5. A(1, 1} vs time with At =0.05s.

can be seen by counting the number of cycles of 4(1, 1) over
te[0,20] seconds for Figs.5 and 6. The former has
approximately 28.5 cycles, and Fig. 6 had approximately
29.3 cycles. We note that this observation is consistent with
period extensions in the Newmark method; for a discussion,
see Chapter 9 of Hughes [ 14]. Unfortunately, this observa-
tion also exposes the main weakness of the numerical

approximation. While Casimir functions and cnergy are
conserved to machine precision (indicating that the discrete
dynamics follow the true trajectories in reduced phase
space), we know from Section 2 that the mid-peint rule is
only second-order accurate in computing the Poisson
bracket. This apparently translates to a systematic deviation
of the discrete attitude from time-varying attitude of the

[totlal = [1,2,3

Ill|lll‘|||\'lll&'l?\!\\l\lll!\\lll!\!l\\—l

s s
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1 —
o0
P
-1
-2
0 2 4 6 8

10 12 i4 16 18 20

Time (seconds)

FIG. 6. A(1, 1) vs time with Az =0.005 s.



continuous system. Work is currently underway to try and
improve the attitude prediction by combining the mid-point
rule with Richardson’s extrapolation techniques [4].

Energy and Casimir
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FIG. 7. Energy and conserved quantities vs time for dual spin with damping.

6.2. ExaMPLE 2 {Dual spin with damping).

example examines the discrete time response of a dual spin
satellite platform containing three internal rotors spinning
at constant anguiar velocity relative to the satelhte platform.

A(2,2)

Principal moments of inertia for the rotors are [, = diag(0.1,
0.1, 0.1). After the rotors are locked, the combined rotors
plus satellite platform is assumed to have principal
moments of inertia /=diag(l, 2, 3). The internal rotor
is spinning with angular momentum components
L=10,0, 10]. At time = 0, the rigid body is spinning freely
about its intermediate (unstable} axis with angular velocity
w="[1, 10, 1]; 2000 timesteps at At =0.05 s are computed.

QOur second

S R e S

I Dualspin willh Ramping

f T 1 ] T i v T ¥ T T

I_lolal = [1,23] Damping = 0.05 -
[_rotor = [1,.1,1] AL = 0.05 (seconds) -
I, roler = [0,0,10] NSTEPS = 2000 ~
w_slart = [1,10,1] ERROR_NORM = 001 -

FIG

40
Time (seconds)

100

. B, A(2,2) vs time with 41=0.05s.
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FIG. 9. A(2,3) vs time with 4¢=0.03s.

Conserved guantities. Our discrete approximation to the
Lyapunov function given in Eg.(44a) asymptotically
approaches a non-zero value as theoretically predicted.
At the same time, the Casimir C(m,.,,d.. )=
lmy  +1+d,, 1 |* is conserved to machine precision (see
Fig. 7).

Spatial artitude, Our numericai experiments conserve
spatial angular momentum =, = A[m,, ,+i+d; ] to
machine precision. As mentioned in Section 4.3, momentum
transfer relies on the conservation of this quantity, and an
alignment of the platform attitude along a single axis
follows for high enough speeds of the driven rotors. Time
variations in components of the attitude matrix 4(2, 2) and
A(2, 3)are shown in Fig. 8 and 9, respectively. Although the
platform is initially tumbling in an erratic manner, the effect
of damping is an alignment of the rotation about a single
axis. This is inferred from component A(2, 3) asymptotically
approaching a single value, while component 4(2,2)
appears to approach a stcady oscillatory motion.

7. CONCLUSIONS

Exact solutions to the flow of a Poisson system
correspond to a continuous succession of Poisson
automorphisms [24], and conserve all Casimirs and the
Hamiltonian {when applicable). This work has been
motivated by a need to find discrete approximations to the
flow that have the same properties. In particular, we have
focussed on the numerical integration of Lie-Poisson

systems using the mid-point rule. We have proved that the
mid-point rule preserves the Poisson structure up to second-
order accuracy. An explicit error formula has been derived
and may be used in measuring the deviations of the Poisson
structure through the approximated flow. Moreover, we
have shown that any naturally conserved quantity can be
approximated up to second order by using the mid-point
rule. For conserved quantities containing only linear and
quadratic terms, such as those in the examples of this paper,
the associated conservation laws are exactly satisfied.

Three rigid body systems have been studied. In each case,
the dynamics in full phase space are obtained via an explicit
reconstruction rule. The resuit is conservation of spatial
angular momentum for the rigid body and dual spin
sateltites, and conservation of momentum along the vertical
axis for the heavy top example. Future applications of study
will include the approximations of the motion of a satellite
in a central gravitational field and optimal control. Work is
currently underway to try and improve the attitude predic-
tion by combining the mid-point rule with Richardson’s
extrapolation techniques [4]. In the long term, we share the
view of Simo and Wong [22] that approximation proce-
dures for the dynamics on SO(3) are directly applicable to
transient dynamic calculations of geometrically exact rods
and shells.
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